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In this paper a study of radiation and viscous losses in a fluid loaded Flexural
Plate Wave (FPW) sensor is presented. Previous to this study, it was believed that
supersonic radiation was the dominant mechanism of damping in FPW devices.
However, because no previous theory had been developed to model finite length
effects, this belief was never challenged. In this paper it will be shown that the
dominant mechanism of damping can not only be due to supersonic radiation, but
also to a fluid/structure resonance which enhances viscous loss. The equations of
motion for a single port FPW sensor plate are derived and coupled to the
equations of motion for a Newtonian fluid. These coupled equations are solved
by using a wave number transform approach. The resulting solution is comprised
of terms derived by Wenzel, plus additional terms representing diffracted wave
dynamics. It is shown that significant viscous damping occurs when a resonance
involving diffracted wave dynamics is excited.
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1. INTRODUCTION

In the macro-domain, structural coupling to many fluids such as air is weak and
relaxation effects are minimal; therefore, these fluids can usually be modelled as
light fluids with little loss. However, as the size of the structure is reduced and as
the frequency of excitation is increased, many of these fluids can no longer be
modelled as a light and lossless. At small scales and high frequencies, shear wave
propagation becomes significant, and fluids such as air must be modelled as heavy,
viscous, heat conducting fluids. For many problems this makes the analysis and
prediction of fluid damping in MicroElectroMechanical devices (MEMs) more
difficult than the analysis and prediction of fluid damping in similar, larger,
macro-domain devices. In this paper the authors attempt to understand some of
the mechanisms which cause damping in a specific MEMs sensor. Traditionally
it was believed that the mechanisms which produce damping limit performance in
the macro-domain where the same mechanisms which produce damping and limit
performance in the micro-domain, but as will be shown, in the micro-domain,
other mechanisms can also play a significant role in mitigating the response of the
structure.
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In fluid loaded MEMs devices, damping occurs due to energy losses in the
structure or due to energy losses into the fluid. Nevertheless, in Flexural Plate
Wave (FPW) sensors [1], structural damping is usually small [2] and most energy
is lost into the fluid. Losses into the fluid can be due to relaxation effects such as
those caused by viscosity and heat transfer, or can be due to radiation effects such
as those due to edge diffraction. In this paper, a study of damping loss due to
viscous relaxation and radiation is presented for a FPW sensor.

Viscous relaxation occurs in a number of different processes. Two well studied
processes are small amplitude fluid motion around a structure and squeeze [3]. The
first process is similar to that which is found in a micro-tuning fork. After
excitation the tuning fork slowly loses energy via irreversible viscous air motion
around its prongs. This process can be represented by a lossy non-propagating
wave solution. Kokubun et al. [4] developed a ‘‘string of beads’’ model to represent
this process, and Hosaka et al. [2] used Kokubun’s model with a squeeze model
to model the dynamics of a micro-beam. Other researchers have also expanded
upon Kokubun’s work to approximate damping due to this process [5]. Another
form of damping is radiation damping. Radiation damping is due to propagating
waves which transport energy into the far field. Cho et al. [6] developed a model
for the fluid damping of a micro comb drive using a shear wave solution. Although
sufficient for the prediction of damping in a comb drive, their model did not
include radiation effects since the waves in their model were non-propagating.
Their model was an improvement over a simpler Couette-type (non-wave) model.

Wenzel [7] and Martin et al. [8] developed a more complex, non-propagating,
wave model for viscous damping in FPW sensors. Although derived for
non-propagating waves, this model could be used to represent damping due to
radiation by allowing wave numbers to be complex. Nevertheless, Wenzel assumed
that plate dimensionality was infinite, and therefore, resonances due to edge
diffraction were neglected. These resonance effects can enhance viscous relaxation
in the fluid which, in return, produces a high amount of damping on the structure.
In this paper the Wenzel solution will be extended to include these neglected
effects. It will be shown that resonances due to diffracted wave dynamics can have
a catastrophic effect on sensor performance.

2. DERIVATION OF EQUATIONS OF MOTION

A single port, Lorentz actuated FPW sensor [8] is illustrated in Figure 1. This
sensor consists of a thin SiN plate/membrane with a serpentine layer of gold wire
laid back and forth across its length. The SiN plate/membrane is supported by a
Si base which produces a clamped boundary condition at its edges. The effect of
the serpentine layer of gold is to spatially couple electrical excitations and
responses of the sensor to a single mechanical mode. Therefore, the electrical
dynamics of the FPW sensor look like a simple second order, resonant system.
Species selective coatings are applied across the surface of the SiN membrane for
the purpose of absorbing mass from the surrounding fluid, thereby increasing the
mass of the membrane relative to the concentration of species in the surrounding
fluid and altering the natural frequency of the spatially filtered mode. Since the
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natural frequency of this mode can be correlated with the concentration of species
in the surrounding fluid, this device can be used as a sensor to measure species
concentrations in a fluid. To measure the natural frequency of the spatially filtered
mode, the electrical impedance of this sensor must be measured. To measure this
electrical impedance, the sensor is electrically excited by a Lorentz force resulting
from the interaction of a supplied current, i, with a supplied constant magnetic
field, B. The response of the electrical system is measured by a voltmeter across
the wire; thereby, the impedance of the electrical side of the system can be deduced.
This impedance response will be second order with a natural frequency dependent
on the concentration of species in the surrounding fluid.

Damping in the electrical side of the system is a function of the damping in the
spatially filtered mechanical mode. If this damping is very small, then the natural
frequency of the electrical system is easily identified by measuring the frequency
at which the impedance magnitude peaks; however, if this damping is large, then
no peak occurs, and the natural frequency cannot be easily identified. If simple
methods are used to identify the natural frequency of the electrical system, then
too much damping will make the device non-functional.

Damping in a FPW device is due to relaxation and radiation in the fluid. In the
past it was believed that significant damping occurred in these devices due to
supersonic radiation effects. This belief was derived from macro-domain theory
and from the fact that at coincidence, the FPW device is non-functional. In the
following work, the present theory has been expanded to explore the validity of
this believe.

Assuming that the length of the SiN plate is long compared to its width and
that the excited mode is comprised of waves with low wave numbers in the length
direction, a two-dimensional analysis of Figure 1 sensor is appropriate. Moreover,
for high wave numbers in the width direction, a simply supported boundary
condition can be assumed. In this paper, less then 7% error in the natural
frequency of the excited mode occurs due to this assumption.

Using the above assumptions, the complex three-dimensional Figure 1 system
can be approximated by a less complex, two-dimensional Figure 2 system. The

Figure 1. An illustration of a single port flexural plate wave sensor.
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Figure 2. A two-dimensional approximation of the single port sensor.

dynamics of this two-dimensional approximation can be solved in closed form,
thereby, supplying greater insight into relevant physics.

In the simplified system, the plate is h thick, Lx long, and is comprised of a SiN
linear elastic material with elastic modulus, E, Poisons ratio, n, and density, rp .
The plate contains a tensile force per unit length, T. A differential element of the
plate can move with x and y displacement, ux (x) and uy (x). Current lines run back
and forth across the infinite length of the plate. Current, i, interacting with a
supplied magnetic field, B, produces a Lorentz force excitation on the plate.
Current is driven by a voltage per unit length, V. A semi-infinite linear Newtonian
fluid with bulk modulus, B, shear viscosity, mo , bulk viscosity, mno , and density, r,
loads the plate.

A differential element of the plate is shown in Figure 3. The shear force in the
plate is Vx , the moment in the plate is Mx , the rotation of the plate is u, the fluid
shear stress on the plate is txy , and the normal stress on the plate is tyy . Summing
forces in the y direction gives

1Vx

1x
+T

1u

1x
+ u

1T
1x

− tyy = rph
12uy

1t2 . (1)

Summing the moments gives

Vx =
1Mx

1x
−

h
2

txy . (2)

Figure 3. A differential element of the plate of the single port sensor.
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Combining equations (1) and (2) and noting that u= 1uy /1x gives the non-linear
equation of motion for the plate,

12Mx

1x2 −
h
2

1txy

1x
− tyy +T ·

12uy

1x2 +
1uy

1x
·
1T
1x

= rph
12uy

1t2 . (3)

The linearized equation of motion can be determined by perturbation analysis
where uy = uy1o, T=To +T1o, Mx =Mx1o, txy = txy1o, tyy = tyy1o, and o is a small
value. Substituting these equations into equation (3) and collecting o order terms
gives

12Mx1

1x2 +To
12uy1

1x2 − rph
12uy1

1t2 =
h
2

1txy1

1x
+ tyy . (4)

Using classical analysis [9, 10], the moment, Mx1, is related to the normal
displacement as

Mx1 =−D
12uy1

1x2 , (5)

where D=Eh3/12(1− n2). Substituting equation (4) into equation (5) and taking
the temporal Fourier transform gives

0 D
rph

12

1x2 −
To

rph1 ·
12uy1

1x2 −v2 12uy1

1t2 =
−1
rph 0t̃yy1 +

h
2

1t̃xy1

1x 1, (6)

where x̃= fa
−ax ejvt dt, j=z−1, and v is a circular frequency.

Equation (6) is the linear equation of motion of an in vacuo plate drive by an
external normal and shear stress. This equation was derived here to show the
inclusion of the shear stress excitation txy which is usually neglected in most plate
analyses [9, 10] but is necessary to couple the dynamics of the plate/membrane to
the dynamics of the fluid.

The normal stress can be expressed in terms of a stress due to the fluid and a
stress due to the Lorentz force excitation as

t̃yy1 =−iB s
14

k=1

(−1)k−1d0x−
2k−1

28
Lx1+ t̃yy1f

, (7)

where t̃yy1f
is the normal stress on the plate due to the fluid and d(x) is a Dirac

delta function.
Combining equation (7) with equation (6) and decomposing the result into in

vacuo modes gives

am0A	 m

i 1= bm −
1

rph g
Lx

0

g̃(x)
i

sin 0mp

Lx
x1 dx, (8)
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where

am =
Lx

2
(v2

m −v2), v2
m =0 D

rph0mp

Lx 1
2

+
To

rph10mp

Lx 1
2

,

ũy1 = s
a

m=1

A	 m sin 0mp

Lx
x1,

bm =
B

rph
s
14

k=1

−1k−1 sin 0mp
(2k−1)

28 1, g̃(x)= t̃yy1f
+

h
2

1t̃xy1

1x
.

Equation (8) is a modal representation of plate dynamics. In the following section,
the function g̃(x) will be represented in terms of these same modes.

From Temkin [11], the linearized displacement of the fluid can be represented
as

ũx1 ı̂+ ũy1j
 =9f	 +9×c	 , (9)

where ũx1 and ũy1 are the x and y displacements of a fluid particle, ı̂ and j
 are x
and y direction unit vectors, and f	 and c	 are potential functions where

(92 + k2
l )f	 =0, (92 + k2

s )c	 =0, (10, 11)

k2
l =

v2/c2
o

1− jv(4n'o /3c2
o )

=
v2

c2
l

, k2
s =

v2

−jvno
=

v2

c2
s

, (12, 13)

where c2
o =B/r is the acoustic sound speed, n'o =1/r (mo + 3

4mno ), and no = mo /r is
the specific viscosity. In air, Temkin used the work of Greenspan [12], to
approximate the bulk viscosity of air as mno 1 0·65mo . Using the fact that
c2

l =(l+2m)/r and that c2
s = m/r [13], m=−jvmo and l=B−jv(mno −

2
3mo ).

Equations (9), (10) and (11) are the equations of motion for the fluid. These
equations are coupled to the equations of motion of the plate by the stress
displacement relations

t̃yy1 = (l+2m)61ũy1

1y
+

1ũx1

1x 7−2m
1ũx1

1x
, t̃xy1 =2m 61ũx1

1y
+

1ũy1

1x 7, (14, 15)

and the potential displacement relations

mx1 =
1

1x
f	 +

1

1y
c	 , uy1 =

1

1y
f	 −

1

1x
c	 , (16, 17)

evaluated at y=0.
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3. SOLUTION OF THE EQUATIONS OF MOTION

The equations of motion (6), (9–11) are solved by using a wave transform
approach. By definition, the wave number transform of f is

F	 (g)=g
a

−a

f	 (x) e−jgx dx. (18)

In the wave number domain, the solution to equations (10) and (11) can be written
as

F	 =A ejqy and C	 =B ejsy, (19, 20)

where C	 (g) is the wave number transform of C	 (x), q=zk2
l − g2 and

s=zk2
s − g2. Following the derivation by Wenzel [7], taking the transform of

equations (3c, d) making the assumption that ũx (x, y=0)3
h/2(1/1x)ũy (x, y=0)‡ and solving for A and B gives

A=
js+jgr
g2 + qs

, B=
jqr−jg
g2 + qs

, (21, 22)

where r=−jg(h/2). Substituting equations (21) and (22) into equations (19) and
(20), the result into the wave number transform of equations (16) and (17), that
result in equations (14) and (15), that result in the wave number transform for the
expression for g(x̃), simplifying and neglecting small terms gives

G	 (g)
U	 y (g, y=0)

= jv2r
s

g2 + sq
, (23)

where G	 (g) is the wave number transform of g̃(x) and U	 y (g) is the wave number
transform of ũy (x).

Since ũy (x, y=0) can be expressed in terms of the in vacuo modes of the plate
and the wave number transform is a linear operator, U	 y (g, y=0) can be expressed
in terms of the wave number transform of the in vacuo modes of the plate.
Representing U	 y (g, y=0) in terms of in vacuo modes, solving for G	 (g) and inverse
transforming gives

g̃(x)=−j
v2r

2p
s
a

n=1

A	 n [I	 1(n, x)− (−1)nI	 1(n, x−Lx )], (24)

where

I	 1(n, x)=g
a

−a

np

Lx
zk2

s − g2 e−jgx

00np

Lx1
2

− g21(g2 +zk2
s − g2zk2

l − g2)

dg.

‡ This assumption comes from the derivation of flexural wave motion in an unloaded plate.
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Figure 4. Contour integration used to calculate I	 1(n, x).

I	 1(n, x) can be solved by using a contour integration. The poles of the integrand
of I1(n, x) are g1 = np/Lx , g2 = np/Lx , g3 =−zk2

s k2
l /(k2

s + k2
l ) and g4 =z[k2

s k2
l /

(k2
s + k2

l )], and the branch integrations are shown in Figure 4. The integral,
I	 1(n, x), can be determined from a contour integration over the upper or lower
half of the g plane. The use of the upper or lower half is dependent upon the
convergence of the G'8 and G08 branches. Computing the integral of the I	 1(n, x)
integrandover the G'8 branch, letting g=limR:a Reiu, and noting that
limR:a(R2 ei2u +zk2

s −R2 ei2uzk2
l −R2 ei2u)= (k2

s + k2
l )/2, gives

lim
R:a g

p

0

np

Lx
zk2

s −R2 ei2u e−jxR cos u exR sin u

00np

Lx1
2

−R2 ei2u1(R2 ei2u +zk2
s −R2 ei2uzk2

l −R2 ei2u)

Ri eiu du:6a0 for
for

xq 0,
xQ 0.

Computing the integral over the G08 branch gives

lim
R:a g

2p

p

np

Lx
zk2

s −R2 ei2u e−jxR cos u exR sin u

00np

Lx1
2

−R2 ei2u1(R2 ei2u +zk2
s −R2 ei2uzk2

l −R2 ei2u)

Ri eiu du:60a for
for

xq 0,
xQ 0.
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Therefore, the lower set of branches can be used to evaluate I	 1(n, x) for xq 0 and
the upper set of branches can be used to evaluate I	 1(n, x) for xQ 0. The integration
around other branches is calculated using standard techniques [14]. Substituting
the result for I	 1(n, x) into equation (24) gives

g
G

G

F

f

g
G

G

F

f

h
G

G

J

j

g̃(x)= s
a

n=1

A	 n

C1(n) sin 0np

Lx
x1

0
for 0Q xQLx

otherwise

+

C2(n) e−jzk2
s k2

l /k
2
s + k2

l x

C2(n) ejzk2
s k2

l /k2
s + k2

l x

−(−1)nC2(n) e−jzk2
s k2

l /k2
s + k2

l (x−Lx )

−(−1)nC2(n) ejzk2
s k2

l /k2
s + k2

l (x−Lx )

for xq 0
for xQ 0
for xqLx

for xQLx

, (25)g
G

G

F

f

h
G

G

J

j

h
G

G

J

j
where

C1(n)=

jv2rXk2
s −0np

Lx1
2

0np

Lx1
2

−Xk2
l −0np

Lx1
2

Xk2
s −0np

Lx1
2

and

C2(n)=

−v2r
np

Lx

k2
s

zk2
s + k2

l

00np

Lx1
2

−
k2

s k2
l

k2
s + k2

l1(k2
s + k2

l )Xk2
s + k2

l

k2
s k2

l

.

The bracketed expression in equation (25) is the solution for the force on the plate
due to the excitation of the nth in vacuo mode. Note that the first term in brackets
is the result of Wenzel. The second set of terms in brackets is due to edge
diffraction.

Substituting equation (25) into equation (8) gives

am0A	 m

i 1= bm + s
a

n=1

cmn0A	 n

i 1, (26)

where

cmn =−
1

rph
C1(n)

Lx

2
dmn −C2(n)

mp

Lx

0mp

Lx 1
2

−
k2

s k2
l

k2
s + k2

l

{1+ (−1)m+ n −((−1)n +(−1)m) e−jk2
s k2

l /k2
s + k2

l Lx} . (27)
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A matrix solution can be used to solve equation (26) for A	 m where m=1, 2, 3. . . .
This solution can then be used to solve for the impedance of the electrical system,

V
i
=R−jvB s

14

l=1

s
a

m=1 0A	 m

i 1 sin 02l−1
28

Lx1(−1)l−1. (28)

4. NUMERICAL RESULTS

In this section the equations of motion will be solved for an air loaded SiN plate.
The properties of the plate and air are given in Table 1. The tension in the plate
was adjusted such that the spatially filtered, excited mode always had a natural
frequency of 0·406 MHz.

To study the mechanisms by which the plate loses energy to the fluid, the length
of the plate was varied. As the length of the plate was varied, the sound speed
of waves in the plate/membrane was altered by an associated variation in tension.
Sound speeds in the plate were subsonic, supersonic, or sonic to waves in the fluid.
In this problem the major damping mechanism in the plate was due to a resonance
in both the fluid and the structure. This resonance occurred when the waves in
the plate were sonic to diffracted waves in the fluid.

This resonance can be seen in equation (25). The first term in the outer brackets
of this equation is the forced excitation response. Note that the C1 coefficient in
front of this term is Wenzel’s expression for fluid loading. The second set for terms
represents loading due to edge diffraction. These terms are proportional to C2. In
Figure 5, the coefficients, C1 and C2, are evaluated versus cp /cd , where cp is the
sound speed of a wave in the plate and cd is the sound speed of a diffracted wave
with wave number v/cd =zk2

s k2
l /(k2

s + k2
l ). Near the sonic condition, edge

diffraction dominates plate loading (=C2= is large). Above and below the sonic
condition, both C1 and C2 are small. This represents the response at a resonance
condition.

T 1

Flexural plate wave material, electrical and geometric properties

SiN Electrical
properties Value properties Value

E 0·27 N/mm2 B 7·78×10−7 N/(A · mm)
rp 2·95×10−21 kg · m/mm4 R 7·87×10−3 V/(mm)
n 0·24

Geometric Air
properties Value properties Value

Lx 2000 mm B 2·14×10−7 N/mm2

h 1 mm r 1·77×10−24 kg · m/mm4

m 1·85×10−11 kg/mm · s
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Figure 5. Relative contribution of response due to Wenzel’s term and due to edge diffraction: w,
=C1=/(rv2) terms; +, =C2=/(rv)2 terms.

Figure 6. Calculated impedance of fluid loaded and unload sensor for subsonic waves in the plate,
cp /cd =0·336; w, with no fluid loading; +, with fluid loading. (a) Magnitude; (b) phase.

Figure 7. Calculated impedance of fluid loaded and unloaded sensor for sonic waves in the plate,
cp /cd =1·00; w, with no fluid loading; +, with fluid loading. (a) Magnitude; (b) phase.
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Figure 8. Calculated impedance of fluid loaded and unloaded sensor for supersonic waves in the
plate, cp /cd =1·34; w, with no fluid loading; +, with fluid loading. (a) Magnitude; (b) phase.

In Figures 6–8, the impedance (volts/amps) response of the fluid loaded FPW for
subsonic, sonic, and supersonic waves in the plate is shown. Also shown in Figures
6–8 are the impedance responses of the FPW without fluid loading. If the viscosity
of the fluid were zero in any condition, the fluid loaded and unloaded
responses would be similar. Therefore, the dominant mechanism of damping in the
fluid is not due to radiation but due to viscous relaxation. At the fluid/structure
resonance, this loss is the greatest.

5. CONCLUSIONS

In this paper, a model representing the mechanisms of radiation and viscous
relaxation in a fluid loaded Flexural Plate Wave (FPW) sensor has been presented.
From this model it was determined that when the wave number of the FPW plate
is close to the wave number of a diffracted surface wave, a fluid/structure resonance
exists which produces substantial energy loss from the structure. This mechanism
of viscous loss in MEMs devices has not been cited in the previous literature.
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APPENDIX: NOTATION

h thickness of the plate
Lx width of the plate
E Young’s modulus of plate material
n Poisson’s ratio of plate material
rp density of plate material
T tension in the plate
ux (x), uy (x) displacement of the plate
i current in wires
B magnetic field
B bulk modulus of fluid
mo shear viscosity of fluid
mno bulk viscosity of fluid
r density of fluid
Vx shear force in plate
Mx moment in plate
txy shear stress in fluid
tyy normal stress in fluid
u= 1uy /1x rotation of plate
uy1 first perturbation of displacement
To , T1 first perturbation of tension
Mx1 first perturbation of moment
txy1, tyy1 first perturbations of stresses
D flexural rigidity
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j =z−1
v circular frequency
f	 dilatational potential
c	 shear potential
kl dilatational wave number
ks shear wave number
F	 wave number transform of dilatational potential
C	 wave number transform of shear potential
g wave number transform variable
q =zk2

l − g2, s=zk2
s − g2

r =jgh/2
cp speed of sound in the plate
cd diffracted wave speed of sound in fluid
x(ṽ) = fa

−ax(t) ejvt dt temporal Fourier transform
X(g) = fa

−ax(x) e−jgx dt spatial Fourier transform


